Топологии
Вы узнали из предыдущей темы, что канальный уровень подготавливает сетевые данные для физической сети. Он должен знать логическую топологию сети, чтобы иметь возможность определить, что необходимо для передачи кадров с одного устройства на другое. В этом разделе объясняется, как канальный уровень связи данных работает с различными логическими топологиями сети.
Топология сети описывает расположение или взаимосвязь сетевых устройств, а также соединения между ними.
Существует два типа топологий, используемых при описании сетей LAN и WAN:
- Физическая топология – Этот термин относится к физическим соединениям и определяет, каким образом соединяются друг с другом оконечные устройства и устройства сетевой инфраструктуры, такие как маршрутизаторы, коммутаторы и точки беспроводного доступа. Топология может также включать определенное местоположение устройства, например номер комнаты и местоположение на стойке оборудования. Физическая топология чаще всего организована по схеме «точка-точка» или «звезда».
- Логическая топология – Термин, используемый для описания путей передачи кадров между узлами. Эта топология определяет виртуальные подключения с использованием интерфейсов устройств и схем IP-адресации уровня 3.
При управлении доступом данных к среде канальный уровень «видит» логическую топологию сети. Именно логическая топология влияет на выбор типа кадрирования в сети и управления доступом к среде.
На рисунке отображается образец физической топологии для небольшой выборки сети.
Топология физической сети показывает шесть комнат, каждая из которых выделена светло-желтым прямоугольником, с различными сетевыми устройствами и кабелями. С левой стороны находится серверная комната с надписью комната 2158. Он содержит маршрутизатор с маркировкой R1, установленный на полке 1 стойки 1 с шестью кабельными соединениями. Кабель в верхней части подключается к облаку с надписью Интернет. Кабель слева подключается к коммутатору с надписью S1, установленному на полке 2 стойки 1. S1 подключен к трем серверам: веб-серверу, установленному на полке 1 стойки 2, почтовому серверу, установленному на полке 2 стойки, и файловому серверу, установленному на полке 3 стойки 2. Кабель, подключенный к нижней части R1, подключается к коммутатору с пометкой S2 установлен на стойке 1 полка 3. S2 имеет два соединения, ведущие к принтеру и ПК в ИТ-офисе с пометкой комната 2159. R1 имеет три кабеля справа, подключенных к трем коммутаторам, расположенным в комнате 2124. Верхний коммутатор имеет маркировку S3 и установлен на полке 1 стойки 1. Средний переключатель имеет маркировку S4 и установлен на стойке 1 полка 2. Нижний выключатель имеет маркировку S5 и установлен на стойке 1 полка 3. S3 имеет кабель слева подключен к ноутбуку в комнате класса 1 комната 2125. S4 имеет кабель слева подключен к ноутбуку в комнате класса 2 комната 2126. S5 имеет кабель слева подключен к ноутбуку в комнате класса 3 комната 2127.
На следующем рисунке показан пример logical топологии для той же сети.
В логической топологии сети отображаются устройства, метки портов и схема сетевой адресации. В середине изображения находится маршрутизатор с надписью R1. Порт с надписью G0/0/0 подключается к облаку в верхней части помеченного Интернета. Порт с надписью G0/2/0 подключается слева к коммутатору с надписью S1 на порту G0/1. S1 подключен к трем серверам. S1 и серверы подсвечены светло-желтым кругом с сетью 192.168.10.0/24, написанной вверху. Порт F0/1 на S1 подключается к веб-серверу. Порт F0/2 на S1 подключается к почтовому серверу. Порт F0/3 на S1 подключается к файловому серверу. Порт G0/0/1 на R1 соединяется внизу к коммутатору с надписью S2. S2 подключается к принтеру и ПК, все из которых выделены в светло-желтый круг с сетью 192.168.11.0/24, написанной внизу. Справа от R1 расположены три дополнительных соединения, каждое из которых подключается к коммутатору на порту G0/1, который затем подключается к ноутбуку на порту F0/1. Каждый коммутатор и ноутбук выделены желтым цветом, а сетевой адрес отображается. Порт G0/0/1 R1 подключается вверху к коммутатору с меткой S3 в сети 192.168.100.0. Порт G0/1/0 R1 соединяется посередине с коммутатором S4 в сети 192.169.101.0. Порт G0/1/1 на R1 подключается внизу к коммутатору с надписью S5 в сети 192.168.102.0. R1 подключается к Интернету по интерфейсу G0/0/0.
Топологии сетей
Сети
Термин топология сети означает способ соединения компьютеров в сеть. Вы также можете услышать другие названия – структура сети или конфигурация сети (это одно и то же). Кроме того, понятие топологии включает множество правил, которые определяют места размещения компьютеров, способы прокладки кабеля, способы размещения связующего оборудования и многое другое. На сегодняшний день сформировались и устоялись несколько основных топологий. Из них можно отметить “шину”, “кольцо” и “звезду”.
Топология “шина”
Топология шина (или, как ее еще часто называют общая шина или магистраль) предполагает использование одного кабеля, к которому подсоединены все рабочие станции.
Общий кабель используется всеми станциями по очереди. Все сообщения, посылаемые отдельными рабочими станциями, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети. Из этого потока каждая рабочая станция отбирает адресованные только ей сообщения.
Достоинства топологии “шина”:
- простота настройки;
- относительная простота монтажа и дешевизна, если все рабочие станции расположены рядом;
- выход из строя одной или нескольких рабочих станций никак не отражается на работе всей сети.
Недостатки топологии “шина”:
- неполадки шины в любом месте (обрыв кабеля, выход из строя сетевого коннектора) приводят к неработоспособности сети;
- сложность поиска неисправностей;
Именно по топологии “шина” строились локальные сети на коаксиальном кабеле . В этом случае в качестве шины выступали отрезки коаксиального кабеля, соединенные Т-коннекторами. Шина прокладывалась через все помещения и подходила к каждому компьютеру. Боковой вывод Т-коннектора вставлялся в разъем на сетевой карте. Вот как это выглядело: Сейчас такие сети безнадежно устарели и повсюду заменены “звездой” на витой паре, однако оборудование под коаксиальный кабель еще можно увидеть на некоторых предприятиях.
Топология “кольцо”
Кольцо – это топология локальной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутое кольцо. Данные передаются от одной рабочей станции к другой в одном направлении (по кругу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера – он передает их дальше по кольцу, в ином случае они дальше не передаются.
Достоинства кольцевой топологии:
- простота установки;
- практически полное отсутствие дополнительного оборудования;
- возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети.
Однако “кольцо” имеет и существенные недостатки:
- каждая рабочая станция должна активно участвовать в пересылке информации; в случае выхода из строя хотя бы одной из них или обрыва кабеля – работа всей сети останавливается;
- подключение новой рабочей станции требует краткосрочного выключения сети, поскольку во время установки нового ПК кольцо должно быть разомкнуто;
- сложность конфигурирования и настройки;
- сложность поиска неисправностей.
Кольцевая топология сети используется довольно редко. Основное применение она нашла в оптоволоконных сетях стандарта Token Ring.
Топология “звезда”
Звезда – это топология локальной сети, где каждая рабочая станция присоединена к центральному устройству (коммутатору или маршрутизатору). Центральное устройство управляет движением пакетов в сети. Каждый компьютер через сетевую карту подключается к коммутатору отдельным кабелем.
[adsense3]
При необходимости можно объединить вместе несколько сетей с топологией “звезда” – в результате вы получите конфигурацию сети с древовидной топологией. Древовидная топология распространена в крупных компаниях. Мы не будем ее подробно рассматривать в данной статье.
Топология “звезда” на сегодняшний день стала основной при построении локальных сетей. Это произошло благодаря ее многочисленным достоинствам:
- выход из строя одной рабочей станции или повреждение ее кабеля не отражается на работе всей сети в целом;
- отличная масштабируемость: для подключения новой рабочей станции достаточно проложить от коммутатора отдельный кабель;
- легкий поиск и устранение неисправностей и обрывов в сети;
- высокая производительность;
- простота настройки и администрирования;
- в сеть легко встраивается дополнительное оборудование.
Однако, как и любая топология, “звезда” не лишена недостатков:
- выход из строя центрального коммутатора обернется неработоспособностью всей сети;
Звезда – самая распространенная топология для проводных и беспроводных сетей. Примером звездообразной топологии является сеть с кабелем типа витая пара, и коммутатором в качестве центрального устройства. Именно такие сети встречаются в большинстве организаций.
Три основных вида топологии: шина, кольцо и звезда
Существуют три основных вида топологии сети: шина, кольцо и звезда. Некоторые локальные сети типа Ethernet используют несколько типов топологии. Все три вида показаны на рис. 9. У каждой топологии есть свои плюсы и минусы.
Рис. 9 Три основных вида топологии локальной сети: шина, кольцо и звезда
В шинной топологии каждое устройство подключается к общему кабелю, что очень похоже на шину питания в компьютерах. Классические коаксиальная «толстая» Ethernet и коаксиальная «тонкая» Ethernet являются примерами шинной топологии. Все устройства в шине могут наблюдать за данными, отправленными любым другим устройством, и наоборот, все передачи идут одновременно ко всем устройствам, подключенным к шине. Так как передача данных проходит на большой скорости и между устройствами могут возникать конфликты, то шинная топология должна подчиняться жестким правилам для стабильной работы сети, в том числе относительно времени передачи, подключений к шине, размера шины, разрешения конфликтов и разрыва шины.
Кольцевая топология подключает каждое устройство к следующему устройству в сети, т.е. последнее устройство соединено с самым первым, что создает кольцо. Данные передаются от одного устройства к другому, пока не дойдут до точки назначения. Цифровые данные обычно регенерируются на каждом устройстве, а для управления передачей и для того, чтобы устройство не заняло всю возможную ширину полосы частот, часто используется маркерная схема.
Звездообразная топология соединяет каждое устройство с концентратором, находящимся в центре звезды. Все сообщения между приборами проходят через концентратор. Некоторые люди называют такую сеть «концентратор и лучи», но термин «звезда» используется чаще. Широко распространенные Ethernet-концентраторы и коммутаторы представляют данную топологию в современных сетях. Как только сигнал с данными от любого подключенного устройства доходит до концентратора или коммутатора, процесс «повторения» регенерирует сигнал.
Некоторые топологии сети представляют собой комбинациию нескольких базовых видов топологий. Например, в Token-Ring соединение происходит по принципу звезды, а ее «лучи» соединены с концентратором Token-Ring (или модулем многостанционного доступа, Multistation Access Unit — MSAU) в телекоммуникационном помещении для формирования кольца. Как вы понимаете, у каждой топологии и стандарта локальной сети есть свои сторонники и противники. Мы не будем оспаривать ту или иную точку зрения, если только вопрос не касается использования кабельной системы для нескольких топологий.
В данной главе мы сосредоточимся исключительно на современных технологиях, в том числе на системе витой пары и волоконно-оптической системе сетей Ethernet.