What is make modules in linux

Просто о make

Меня всегда привлекал минимализм. Идея о том, что одна вещь должна выполнять одну функцию, но при этом выполнять ее как можно лучше, вылилась в создание UNIX. И хотя UNIX давно уже нельзя назвать простой системой, да и минимализм в ней узреть не так то просто, ее можно считать наглядным примером количество- качественной трансформации множества простых и понятных вещей в одну весьма непростую и не прозрачную. В своем развитии make прошел примерно такой же путь: простота и ясность, с ростом масштабов, превратилась в жуткого монстра (вспомните свои ощущения, когда впервые открыли мэйкфайл).

Мое упорное игнорирование make в течении долгого времени, было обусловлено удобством используемых IDE, и нежеланием разбираться в этом ‘пережитке прошлого’ (по сути — ленью). Однако, все эти надоедливые кнопочки, менюшки ит.п. атрибуты всевозможных студий, заставили меня искать альтернативу тому методу работы, который я практиковал до сих пор. Нет, я не стал гуру make, но полученных мною знаний вполне достаточно для моих небольших проектов. Данная статья предназначена для тех, кто так же как и я еще совсем недавно, желают вырваться из уютного оконного рабства в аскетичный, но свободный мир шелла.

Make- основные сведения

make — утилита предназначенная для автоматизации преобразования файлов из одной формы в другую. Правила преобразования задаются в скрипте с именем Makefile, который должен находиться в корне рабочей директории проекта. Сам скрипт состоит из набора правил, которые в свою очередь описываются:

1) целями (то, что данное правило делает);
2) реквизитами (то, что необходимо для выполнения правила и получения целей);
3) командами (выполняющими данные преобразования).

В общем виде синтаксис makefile можно представить так:

# Индентация осуществляется исключительно при помощи символов табуляции, # каждой команде должен предшествовать отступ :  .

То есть, правило make это ответы на три вопроса:

Несложно заметить что процессы трансляции и компиляции очень красиво ложатся на эту схему:

Простейший Makefile

Предположим, у нас имеется программа, состоящая всего из одного файла:

Для его компиляции достаточно очень простого мэйкфайла:

hello: main.c gcc -o hello main.c 

Данный Makefile состоит из одного правила, которое в свою очередь состоит из цели — «hello», реквизита — «main.c», и команды — «gcc -o hello main.c». Теперь, для компиляции достаточно дать команду make в рабочем каталоге. По умолчанию make станет выполнять самое первое правило, если цель выполнения не была явно указана при вызове:

Компиляция из множества исходников

/* * hello.c */ #include void hello()

Makefile, выполняющий компиляцию этой программы может выглядеть так:

hello: main.c hello.c gcc -o hello main.c hello.c 

Он вполне работоспособен, однако имеет один значительный недостаток: какой — раскроем далее.

Инкрементная компиляция

Представим, что наша программа состоит из десятка- другого исходных файлов. Мы вносим изменения в один из них, и хотим ее пересобрать. Использование подхода описанного в предыдущем примере приведет к тому, что все без исключения исходные файлы будут снова скомпилированы, что негативно скажется на времени перекомпиляции. Решение — разделить компиляцию на два этапа: этап трансляции и этап линковки.

Читайте также:  Установка dr web linux server

Теперь, после изменения одного из исходных файлов, достаточно произвести его трансляцию и линковку всех объектных файлов. При этом мы пропускаем этап трансляции не затронутых изменениями реквизитов, что сокращает время компиляции в целом. Такой подход называется инкрементной компиляцией. Для ее поддержки make сопоставляет время изменения целей и их реквизитов (используя данные файловой системы), благодаря чему самостоятельно решает какие правила следует выполнить, а какие можно просто проигнорировать:

main.o: main.c gcc -c -o main.o main.c hello.o: hello.c gcc -c -o hello.o hello.c hello: main.o hello.o gcc -o hello main.o hello.o 

Попробуйте собрать этот проект. Для его сборки необходимо явно указать цель, т.е. дать команду make hello.
После- измените любой из исходных файлов и соберите его снова. Обратите внимание на то, что во время второй компиляции, транслироваться будет только измененный файл.

После запуска make попытается сразу получить цель hello, но для ее создания необходимы файлы main.o и hello.o, которых пока еще нет. Поэтому выполнение правила будет отложено и make станет искать правила, описывающие получение недостающих реквизитов. Как только все реквизиты будут получены, make вернется к выполнению отложенной цели. Отсюда следует, что make выполняет правила рекурсивно.

Фиктивные цели

На самом деле, в качестве make целей могут выступать не только реальные файлы. Все, кому приходилось собирать программы из исходных кодов должны быть знакомы с двумя стандартными в мире UNIX командами:

Командой make производят компиляцию программы, командой make install — установку. Такой подход весьма удобен, поскольку все необходимое для сборки и развертывания приложения в целевой системе включено в один файл (забудем на время о скрипте configure). Обратите внимание на то, что в первом случае мы не указываем цель, а во втором целью является вовсе не создание файла install, а процесс установки приложения в систему. Проделывать такие фокусы нам позволяют так называемые фиктивные (phony) цели. Вот краткий список стандартных целей:

  • all — является стандартной целью по умолчанию. При вызове make ее можно явно не указывать.
  • clean — очистить каталог от всех файлов полученных в результате компиляции.
  • install — произвести инсталляцию
  • uninstall — и деинсталляцию соответственно.
.PHONY: all clean install uninstall all: hello clean: rm -rf hello *.o main.o: main.c gcc -c -o main.o main.c hello.o: hello.c gcc -c -o hello.o hello.c hello: main.o hello.o gcc -o hello main.o hello.o install: install ./hello /usr/local/bin uninstall: rm -rf /usr/local/bin/hello 

Теперь мы можем собрать нашу программу, произвести ее инсталлцию/деинсталляцию, а так же очистить рабочий каталог, используя для этого стандартные make цели.

Читайте также:  Обновить драйверы для linux

Обратите внимание на то, что в цели all не указаны команды; все что ей нужно — получить реквизит hello. Зная о рекурсивной природе make, не сложно предположить как будет работать этот скрипт. Так же следует обратить особое внимание на то, что если файл hello уже имеется (остался после предыдущей компиляции) и его реквизиты не были изменены, то команда make ничего не станет пересобирать. Это классические грабли make. Так например, изменив заголовочный файл, случайно не включенный в список реквизитов, можно получить долгие часы головной боли. Поэтому, чтобы гарантированно полностью пересобрать проект, нужно предварительно очистить рабочий каталог:

Для выполнения целей install/uninstall вам потребуются использовать sudo.

Переменные

Все те, кто знакомы с правилом DRY (Don’t repeat yourself), наверняка уже заметили неладное, а именно — наш Makefile содержит большое число повторяющихся фрагментов, что может привести к путанице при последующих попытках его расширить или изменить. В императивных языках для этих целей у нас имеются переменные и константы; make тоже располагает подобными средствами. Переменные в make представляют собой именованные строки и определяются очень просто:

Существует негласное правило, согласно которому следует именовать переменные в верхнем регистре, например:

Так мы определили список исходных файлов. Для использования значения переменной ее следует разименовать при помощи конструкции $(); например так:

Ниже представлен мэйкфайл, использующий две переменные: TARGET — для определения имени целевой программы и PREFIX — для определения пути установки программы в систему.

TARGET = hello PREFIX = /usr/local/bin .PHONY: all clean install uninstall all: $(TARGET) clean: rm -rf $(TARGET) *.o main.o: main.c gcc -c -o main.o main.c hello.o: hello.c gcc -c -o hello.o hello.c $(TARGET): main.o hello.o gcc -o $(TARGET) main.o hello.o install: install $(TARGET) $(PREFIX) uninstall: rm -rf $(PREFIX)/$(TARGET) 

Это уже посимпатичней. Думаю, теперь вышеприведенный пример для вас в особых комментариях не нуждается.

Автоматические переменные

Автоматические переменные предназначены для упрощения мейкфайлов, но на мой взгляд негативно сказываются на их читабельности. Как бы то ни было, я приведу здесь несколько наиболее часто используемых переменных, а что с ними делать (и делать ли вообще) решать вам:

Заключение

В этой статье я попытался подробно объяснить основы написания и работы мэйкфайлов. Надеюсь, что она поможет вам приобрести понимание сути make и в кратчайшие сроки освоить этот провереный временем инструмент.

Источник

What are the differences between these terms in kernel compilations

How does the terms make, make bzImage, make modules, make install, make modules_install relate to each other. One kernel tutorial I saw used all make bzImage, make modules, make install, make modules_install commands to compile and install a new kernel. While another one used only make, make install and make modules_install commanads. So what are the differences?

1 Answer 1

Over time, the Linux kernel compilation process has itself been developed further. It has become more complex, but also more streamlined. Run make help in the kernel source directory to see a list of all make targets and brief explanations of each.

Читайте также:  Чтение log файлов linux

With the current 5.x kernel series, the commands make and make all are equivalent: both of them will run an architecture-specific list of default targets.

On the x86 hardware architecture, the default list contains:

  • make vmlinux to build the bare kernel (this is also automatically executed if you run make bzImage , as before you can make a compressed bootable kernel image file, you’ll first need to make the thing you’ll want to compress; the uncompressed version is also useful for certain kernel debugging tools.)
  • make modules to build the kernel modules
  • make bzImage to create the bootable compressed kernel image file.

All of the above can be executed as a regular user, without extra privileges.

On the other hand, make install will use either ~/bin/installkernel or /sbin/installkernel if they exist. Your own ~/bin/installkernel might include the use of sudo or similar where applicable, but the system /sbin/installkernel is typically written to expect that you already have root access.

Likewise, make modules_install will copy the modules of the new kernel version to /lib/modules// directory tree, so it will require root access to run successfully.

As the best practice is to avoid running any long and complicated processes (such as kernel compilation!) as root if there is no specific need, the current minimal kernel compilation process would be something like:

  • configure kernel as a regular user
  • run make or make all as a regular user
  • run sudo make modules_install to install the kernel modules
  • run sudo make install to install the actual kernel. I would recommend doing this last, since /sbin/installkernel may trigger other operations like automatic building of an initramfs file, and those other operations would be more successful if the new kernel modules are already in place.

But if you are doing kernel development and not just building a customized kernel for your own needs, you might want to use a more fine-grained process; for example, if you are developing a kernel module, you might want to run make modules as a separate step so you can more easily see if it fails because of an error you’ve made, and can get to fixing the error more quickly. After fixing the error, you will then be able to just skip to running make modules again, as the previous steps are already successfully done.

Likewise, a developer working with the early kernel start-up process might just want the bzImage for testing in another system (one with a tricky set of ACPI tables or whatever), and not care about the modules at all.

Источник

Оцените статью
Adblock
detector