Wi fi модули esp8266 12

WiFi модуль ESP8266 esp-12f. Датчик открытия двери своими руками

Добрый день,
Интересует история и опыт создания WiFi датчика открытия двери или наступления иного события, которое нужно зарегистрировать?
Вам под кат! Будет интересно!

Мотивация

Изначально мне хотелось с минимальными затратами времени и денег сделать датчик открытия входной двери в квартиру. Мне было интересно знать, ходит ли владелец в жильё, которое мы снимали.

Структура статьи

В этой статье я опишу несколько версий датчика и примененных схемотехнически-программных методов с целью сделать устройство лучше. Статья будет полезна для тех, кто хочет реализовать свою идею при батарейном питании ESP8266, но опасается, что двух АА батареек не хватит для работы ESP в режиме сна с периодическим пробуждением.
Я отдаю себе отчет, что на данный момент лучшим вариантом был бы BLE/ZigBee, но они на тот момент требовали создания дополнительной инфраструктуры, чего я хотел избежать дома и что бывает невозможно в условиях офиса.

Первая версия датчика

Идея и реализация были подсмотрены на Pinterest.
В ESP я прошил интерпретатор Бейсика. ESP при сбросе подключается к WiFi и посещает прописанный URL и засыпает.
URL это WebHook сервиса ifttt.com. При каждом посещении заданного URL ifttt.com посылает e-mail с заданной темой и датой/временем наступления события. Ввиду того, что имейлы можно получать и на компьютере и на мобильном устройстве, а также сортировать в папки фильтрами — система доставки событий уже готова 🙂

Система с WebHook-ами будет использована во всех версиях датчиков.

Аппаратно это была крайне энергонеэффективная связка платы NodeMcu и роутера HAME MPR-A2 в режиме повербанка:

Одного заряда встроенной в роутер 18650 хватало на неделю работы устройства, впрочем этого времени хватало для «охраны» квартиры во время командировок.
К земле и линии Reset был припаян нормальноразомкнутый геркон, который выводил из сна плату при открытии двери. Такое решение требовало расположить магнит так, чтобы при закрытой двери геркон был разомкнут, и лишь при открытии двери он должен был ненадолго замкнуться, чтобы сбросить плату и инициировать работу программы.

Плюсы:
+Собрано за 30 минут на коленке из имеющихся деталей.

Минусы:
-Малое время работы из-за двойного преобразования напряжения.
-Бейсик отрабатывал программу 10+секунд.

Вторая версия датчика

Решено избавиться от Бейсика в пользу Ардуино, а также от двойного преобразования питания и сделать какой-то анализ бюджета питания вообще.
По питанию был выбор: литий+LDO или литий+импульсный преобразователь или просто 2хАА.
Выбрал просто 2хАА и мысленно готовился менять батарейки каждый месяц 🙂
Использовал вот такие щелочные батарейки:

 #include #include #include #include ESP8266WiFiMulti WiFiMulti; void setup() < WiFiMulti.addAP("myssid", "mypassword"); >void loop() < // wait for WiFi connection if((WiFiMulti.run() == WL_CONNECTED)) < HTTPClient http; http.begin("http://maker.ifttt.com/trigger/entrancedoor/with/key/censored"); //HTTP int httpCode = http.GET(); http.end(); ESP.deepSleep(999999999*999999999U, WAKE_NO_RFCAL); >> 

Достал из запасов пластиковую коробочку 60*36*25mm и оформил в неё датчик:

Внутри треш и угар, геркон всё так же на reset+gnd, снял светодиод с ESP, блокировочный конденсатор отвалился и всё на проводах.
Не забываем, это глубокая beta-версия, которая в таком как она есть виде всё-же смогла меня удивить:

Герконовый датчик прикручен, в косяк двери вставлен маленький магнит, коробочка приклеена липучей велкро S-12730 к стене.
Когда дверь открывается, то магнит кратковременно пролетает над герконом и сбрасывает ESP:

Читайте также:  Wi fi хот спот ростелеком точка доступа

Анализ потребления питания

Так как в моей схеме питания нет никаких преобразований совсем, то всё что потребит во время работы и сна датчик — то я и потеряю, и мне захотелось оценить эти потери.
В активном режиме датчик работает 5 секунд и получается вот такая кривая потребления:

Я даже делал отдельный топик с самодельным приспособлением для замеров.
Всё остальное время датчик спит, и потребление во сне у разных версий модулей очень отличается.
Разброс от 16мкА до 250мкА во сне и всё из-за неотмытых плат, левых чипов флеш-памяти и дешевых модулей:


Попытка использовать ESP8285 дала 250мкА ток сна(WTF. ):

Модуль по ссылке из заглавия имел ток сна 16мкА:

А теперь самое интересное, цифры:
На одной паре батареек АА датчик работал с 18го июня 2018г 06:51AM до 4 октября 2019г 09:41PM что составило 473 дня!
За эти 473 дня датчик сработал 8912 раз(. ).
Так что мой пессимизм по поводу смены батарей каждый месяц был глубоко не оправдан.
Когда утром 5го октября 2019го я не получил от датчика e-mail, я вскрыл коробочку и нашел батареи в таком состоянии(пара новых с черной изолентой для сравнения):

Эта окисленная пара, которая вчера смогла в последний раз, имела напряжение 2,46В и внутреннее сопротивление по YR1030 0,49 Ом 🙂

Немного арифметики, которая показывает на что можно рассчитывать строящему устройство на ESP+2xAA:
1. 8912*5/60/60=12,36 часов в активном режиме работы.
2. 473*24-12,36=11339,64 часов во сне.
3. 11339,64*0,016=181мА*ч было потрачено во сне, и я это исправлю в следующей версии датчика.

Построил еще один датчик второй версии, установил на работе, и отловил редиску, которая лазила по моим шухлядкам 🙂

Плюсы:
+Существенно большее время автономной работы по сравнению с первой версией.
+Проще конструкция.

Минусы:
-Замкнутый надолго геркон не даст возможность коду сработать, как и в первой версии.
-Механический геркон, может стоит рассмотреть датчик Холла?
-Есть ненулевой (16мкА) ток сна, который можно и нужно оптимизировать.

Третья итерация

Не стал называть версией, так как третья итерация дала мне три разных датчика.
Купил пять разных датчиков Холла и проверил их потребление:

 1. DRV5032FBDBZR - 0,74мкА 2. RR121-1B13-311- 0,19мкА 3. DRV5032FADBZR - 1,64мкА 4. CT832BV-HS3 - 1,05мкА 5. Si7201-B-00-FV- 0,35мкА 

Решил продолжать с номером пять, как с самым стабильно работающим.

По наводке от uncle_sem купил герконищи:

Я нашел таймер TPL5110, который позволит не работать с линией reset и сократить потребление датчика во сне.
По даташиту таймер потребляет 35нА, а в реальности 10нА. Таймер позволяет либо периодически включать устройство с помощью внешнего мосфета, что было бы полезно для датчика температуры, либо работать в одиночном режиме по команде.

Я выбрал одиночный режим. К таймеру был куплен P-CH мосфет SSM3J338R,LF, вот они на макетницах:

Читайте также:  Подключение интернета ps3 wifi

Вот пример использования таймера из даташита:

Я поставил задающий резистор на 12кОм для получения 11-и секундной задержки во включенном состоянии. Кроме того у таймера есть возможность досрочного отключения ESP если получит высокий уровень на входе «Done» я подключил его к GPIO 4 так как на нем нет никакой активности при старте ESP.

 #include #include #include #include int cntr=0; ESP8266WiFiMulti WiFiMulti; void setup() < digitalWrite(4,LOW); pinMode(4,OUTPUT); WiFiMulti.addAP("myssid", "mypassword"); >void loop() < // wait for WiFi connection if((WiFiMulti.run() == WL_CONNECTED)) < HTTPClient http; http.begin("http://maker.ifttt.com/trigger/entrancedoor/with/key/censored"); //HTTP int httpCode = http.GET(); http.end(); digitalWrite(4,HIGH); delay(10); ESP.deepSleep(0); >delay(200);cntr++; if (cntr==150) < digitalWrite(4,HIGH); delay(10); ESP.deepSleep(0); >> 

Первая тестовая плата с неотмытым флюсом, но всё-же заработала:

Оказалось, между DRV TPL5110 и затвором мосфета нужно было поставить 5кОм резистор, чтобы всё работало как надо.

Я испытал на этой тестовой плате и геркон и датчик Холла и даже оптопару и создал 4 платы:
1. Нано плата только с таймером, размером 16х16мм, как раз помещается сзади ESP:

2. Плата для таймера с герконом для корпуса 60*36*25mm
3. Плата для таймера с оптопарой — датчик дверного звонка.
4. Плата для таймера с датчиком Холла на торце.

Вот они в фотовиде:

Вот они смонтированы:

Плюсы:
+10нА ток сна датчика с герконом или оптопарой.
+360нА ток сна у версии с датчиком Холла.
+Замкнутый надолго геркон/Холл/оптопара больше не будут препятствовать выполнению программы.
+Нано-версию можно встроить даже в шкатулку, настолько она маленькая.

Минусы:
-Нет возможности различать факт открытия или закрытия двери. На оба события будет сработка, если между ними более 5 секунд.
-Энергопотребление в активном режиме выше, чем у современных не-WiFi альтернатив.

Выводы

Источник

Дружимся с ESP

Последние пару лет практически все прототипирование несложных IoT-устройств я делаю на NodeMCU, хотя зачастую она и великовата по размеру, и дороговата, и избыточна по функционалу. А все потому, что имела неудачный опыт с ESP-01, которая совершенно не поддавалась прошивке. Сейчас пришло время преодолеть этот барьер и освоить другие железки, от которых мне нужно следующее — Wi-Fi и пины для подключения периферии.

В этой статье разберем подключение к платформе Интернета вещей наиболее популярных плат с интерфейсом Wi-Fi. Их можно использовать, чтобы управлять своим устройством дистанционно или чтобы снимать показания с сенсоров через интернет.

Несколько представленных в статье модулей (ESP-01, ESP-07, ESP-12E, ESP-12F) и плат (Goouuu Mini-S1, WeMos D1 mini и NodeMCU V2) базируются на контроллере ESP8266, использование которого позволяет простым и дешевым способом добавить в своё устройство беспроводную связь через Wi-Fi.

Так выглядит модельный ряд модулей на базе чипа ESP8266.

Последняя плата из тех, о которых я расскажу (ESP32 WROOM DevKit v1), построена на контроллере семейства ESP32 — более продвинутой по своим возможностям версии ESP8266.

Все представленные модели можно программировать и загружать прошивки через Arduino IDE точно так же, как при работе с Arduino.

Настройка среды программирования Arduino IDE

По умолчанию среда IDE настроена только на AVR-платы. Для платформ, представленных ниже, необходимо добавить в менеджере плат дополнительную поддержку.

1) Открываем среду программирования Arduino IDE.

http://arduino.esp8266.com/stable/package_esp8266com_index.json, https://dl.espressif.com/dl/package_esp32_index.json

4) В пункте меню Tools (Инструменты) -> Board (Плата) выбираем Boards manager (Менеджер плат).

Находим в списке платформы на ESP8266 и нажимаем на кнопку Install (Установить).

6) Надпись INSTALLED сообщает, что дополнения успешно установлены.

Читайте также:  Настройки вай фай адаптера через диспетчер устройств

7) Аналогичным образом устанавливаем дополнение для ESP32.

8) Теперь нам доступны к программированию платформы с модулем ESP8266 и ESP32.

9) Для подключения плат к платформе Интернета вещей используем библиотеку EspMQTTClient. Чтобы ее установить, в пункте меню Tools (Инструменты) выбираем Manage Libraries (Управлять библиотеками). Находим и устанавливаем библиотеку EspMQTTClient. Может появиться сообщение об установке дополнительных библиотек. Выбираем “Install all”.

Примечание — Также для работы с платами понадобится установить драйверы CH340 (WeMos и Goouuu) и CP2102 (для остальных). Их отсутствие повлияет на то, найдет ли Arduino IDE COM-порт, к которому подключена плата.

Код прошивки

Для прошивки всех используемых ниже модулей используем один и тот же код.

  1. Установка Wi-Fi соединения
  2. Подключение к объекту на платформе Rightech IoT Cloud по протоколу MQTT
  3. Отправка рандомных значений по температуре («base/state/temperature») и влажности («base/state/humidity») каждые 5 секунд (PUB_DELAY)
  4. Получение сообщений о переключении света («base/relay/led1»)
#include "Arduino.h" #include "EspMQTTClient.h" /* https://github.com/plapointe6/EspMQTTClient */ /* https://github.com/knolleary/pubsubclient */ #define PUB_DELAY (5 * 1000) /* 5 seconds */ EspMQTTClient client( "", "", "dev.rightech.io", "" ); void setup() < Serial.begin(9600); >void onConnectionEstablished() < client.subscribe("base/relay/led1", [] (const String &payload) < Serial.println(payload); >); > long last = 0; void publishTemperature() < long now = millis(); if (client.isConnected() && (now - last >PUB_DELAY)) < client.publish("base/state/temperature", String(random(20, 30))); client.publish("base/state/humidity", String(random(40, 90))); last = now; >> void loop()

Работоспособность кода будем проверять на платформе Rightech IoT Cloud, именно поэтому в качестве адреса MQTT-брокера указан dev.rightech.io. Идентификаторами клиентов служат идентификаторы объектов, созданных на платформе. Под каждую проверку я завела на платформе отдельный объект, именно поэтому во всех скринах кодов, которые будут далее представлены, отличается только строка .

Прим. — Можно подключаться и к одному и тому же объекту, тогда можно использовать один и тот же код для прошивки всех плат без изменений, однако следите, чтобы в таком случае платы не подключались к одному и тому же объекту одновременно, иначе случится коллизия.

Модули на базе ESP8266

Для работы с модулями на базе ESP8266 есть два варианта:

  1. Работа с AT командами (в стандартной прошивке Wi-Fi модуль общается с управляющей платой через «AT-команды» по протоколу UART);
  2. Wi-Fi модуль как самостоятельный контроллер (все представленные модули очень умные: внутри чипа прячется целый микроконтроллер, который можно программировать на языке C++ через Arduino IDE).

В статье будем рассматривать второй вариант — прошивка модулей в виде самостоятельного полноценного устройства. Здесь также есть два варианта прошивки с точки зрения железа:

Рассмотрим второй вариант — использовать адаптер на базе чипа CP2102 (например, такой https://www.chipdip.ru/product/cp2102-usb-uart-board-type-a?frommarket=https%3A%2F%2Fmarket.yandex.ru%2Fsearch%3Frs%3DeJwzSvKS4xKzLI&ymclid=16146772489486451735000001). Обязательно обратите внимание на то, чтобы адаптер позволял выдавать выходное напряжение 3.3 В, не больше!

1. ESP-01

ESP-01 — самый популярный модуль на ESP8266. PCB антенна обеспечивает дальность до 400 м на открытом пространстве.

Внешний вид

Питание

Родное напряжение модуля — 3,3 В. Его пины не толерантны к 5 В. Если вы подадите напряжение выше, чем 3,3 В на пин питания, коммуникации или ввода-вывода, модуль выйдет из строя.

Подключение периферии

2 порта ввода-вывода общего назначения

Распиновка

Подключение к IoT

Аппаратная часть

Источник

Оцените статью
Adblock
detector